There is a principle, widely accepted and often taken for granted, that connects abilities and metaphysical possibilities. I call it the *poss-ability principle*:

If S is able to ϕ, then it is metaphysically possible for S to ϕ.

The poss-ability principle states that each of an agent’s abilities must be witnessed by a possible exercising thereof; i.e., if S is able to ϕ, then there must be some possible world in which S (exercises her ability and) ϕs.\(^1\)

As we will see, quite a lot turns on whether the poss-ability principle is true. The poss-ability principle is a premise in some of the main arguments for incompatibilism, a consequence of the leading analyses of ability, and often an unstated but critical assumption working in the background. The thesis that an object is visible (or knowable) only if there is some possible world in which the object is seen (or known) relies, implicitly, on the poss-ability principle, as does the widely held thesis that ‘ought’ implies ‘it is metaphysically possible that’.

In this paper I argue against the poss-ability principle by introducing and developing a novel class of counterexamples. I claim that an agent might be able to do what it is metaphysically impossible for her to do. In fact, somewhat more surprisingly, I claim that an agent might be able to do what it is metaphysically impossible *tout court* to do.

\(^1\)Possible worlds are maximally complete possibilities. I assume that incomplete metaphysical possibilities are always contained within complete metaphysical possibilities. So, if there is some possibility in which S ϕs, then there is some possible world in which S ϕs.
I am not, to be sure, the first philosopher to allege that there are counterexamples to the poss-ability principle. Descartes famously claimed that God’s abilities were unconstrained by metaphysical possibility;\(^2\) the early Leibniz, though less radical than Descartes, also thought that God had abilities that could not be exercised;\(^3\) and more recently there has been some discussion of whether the poss-ability principle is true of agents who are situated unusually vis-à-vis time (e.g. backward time-travelers\(^4\) or agents whose four-dimensional bodies form a closed causal loop\(^5\)). I think that considering deities and temporally unusual agents can be instructive, since it helps to mitigate the knee-jerk impulse in favor of the poss-ability principle, but I will for the most part be putting these sorts of extraordinary agents aside. I am interested in a class of counterexamples that arise, not due to supernatural powers or strange temporal predicaments, but due to another reason altogether. If the counterexamples that I develop in this paper are successful, then even ordinary human beings might be counterexamples to the poss-ability principle. In fact, I will go on to claim that one of the agents who serves as a counterexample to the poss-ability principle is you.

This paper is divided into two sections. First, I argue that we should reject the poss-ability principle, and then I argue that the consequences of rejecting the poss-ability principle are interesting and far-reaching.

\(^2\)Descartes seems to think that God is able to will the falsity of any truth, even necessary truths, even logical truths; he writes in a 1630 letter to Mersenne that God was ‘just as free to make it not true that the radii of a circle are unequal as he was free not to create the world’ (AT 1:152, CSMK 25). For further discussion, see e.g. Frankfurt 1977 and Kaufman 2002. For a contemporary discussion of whether deities might be counterexamples to the poss-ability principle, see Maier MS.

\(^3\)For discussion, see e.g. Adams 1994 and Lin MS.

\(^4\)Fara 2010 and Lewis 1976, among others, argue that backwards time-travelers are counterexamples to the poss-ability principle; they think that although it is metaphysically impossible for an agent to (permanently) kill her younger self, still a backwards time-traveler might be able to do so. For discussion, see e.g. Skow MS, Vihvelin 1996, and Vranas 2010. As I say in note 13, I think that there is reason to doubt that time-travelers are able to (permanently) kill their younger selves.

\(^5\)For an interesting discussion of agents whose four-dimensional bodies form a closed causal loop, see Kment MSb.
1 The case against the poss-ability principle

I begin by identifying a class of cases—G-cases—that have an interesting and unexplored structure. I think that G-cases are straightforward counterexamples to the poss-ability principle. In a G-case, G is able to ϕ, I claim, even though it is metaphysically impossible for G to ϕ.

My argument against the poss-ability principle does not rest entirely on an appeal to intuition, however; it is also undergirded by a bit of theory. There is clearly some interesting and intimate relationship between abilities and metaphysical possibilities, and, after having introduced G-cases, I will put forward what I see as the correct account of this relationship. I claim that the relationship between abilities and metaphysical possibilities is not primarily metaphysical (as it is standardly thought to be) but rather primarily epistemological. I think that once we appreciate the epistemological relationship between abilities and metaphysical possibilities: (1) we will see what is right about the poss-ability principle, since there is something right about it; (2) we will see what is wrong about the poss-ability principle, since there is something wrong about it; and (3) we will come to expect counterexamples to the poss-ability principle of exactly the G-case variety.

There are many ways to construct G-cases. The simplest take place in deterministic universes and rely on the compatibilistic assumption that agents might be able to do what they are determined not to do. But there are also G-cases that take place in indeterministic universes. Ultimately I think that compatibilists and incompatibilists should agree that the poss-ability principle is false.

1.1 The structure of a G-case

More important than particular G-cases is the structure that is common to them all. I thus begin with the structure and then offer a particular G-case that nicely exemplifies the structure.

In a G-case, one possible world stands apart from the rest of the worlds vis-à-vis the prospects of ϕing. (Strictly speaking, it need not be a single possible world; it could be a class, even an infinite class, of worlds, but the point is easiest to make if we imagine a single world being special.) If ϕing
occurs anywhere in modal space, it occurs exclusively at the one possible world. Agents in the one possible world might be able to \(\phi \), but agents in any other possible world clearly and demonstrably are unable to \(\phi \). Since there are unexercised abilities, the question arises whether an agent might have the unexercised ability to \(\phi \). And I think that an agent might. Thus the blueprint for a \(G \)-case: \(G \) has the unexercised ability to \(\phi \) in the one possible world, and lacks the ability to \(\phi \) in every other possible world. There is one possible world in which \(G \) is able to \(\phi \), but there are no possible worlds in which \(G \) (exercises her ability and) \(\phi s \).

In sections 1.3 and 2.6, we will look at other \(G \)-cases. For now, I want to focus on a particularly simple example:

Simple \(G \). Suppose that determinism is true. Let \(h \) be the complete specification of the initial conditions of the universe. Let \(l \) be the complete specification of the deterministic laws of nature. Let \(h \& l \) be their conjunction. Suppose that \(G \) has not, does not, and will not believe that \(h \& l \). \(G \) never finds herself reading a book or listening to a radio program about the initial conditions or the laws of nature; \(G \) was home from school and sick with the flu on the day that her physics teacher covered the initial conditions and the laws of nature in class, and the physics teacher never bothered to go over the material again. We may suppose that it is fairly common knowledge in \(G \)’s community that \(h \& l \), that matriculating high school seniors are expected to know that \(h \& l \), that many of \(G \)’s classmates know that \(h \& l \), and that \(G \) is one of the brightest students in her class. The proposition that \(h \& l \) does not exceed \(G \)’s cognitive wherewithal, either in length or in complexity, and there are no special obstacles preventing \(G \) from forming the belief.

Compatibilists, one and all, will agree that \(G \) is able to believe that \(h \& l \). I make a stronger claim. I claim that \(G \) is able to truly believe— or better still—that \(G \) is able to know or learn that \(h \& l \). \(G \) has a factive ability.

What are factive abilities?

Factive abilities are a subclass of object-dependent abilities. Object-dependent abilities are abilities to perform object-dependent actions, such as
kissing the Blarney Stone or seeing the Statue of Liberty. Object-dependent actions and abilities are common and familiar. Most of us are able to see the Statue of Liberty, for example, but blind people are not. My sister has an object-dependent ability that I lack: unlike me, she is able to get her dog, Pogo, to roll over.

Factive abilities are object-dependent abilities that depend on facts. Just as the ability to see the Statue of Liberty depends on the existence of the Statue of Liberty, so the ability to know that \(p \) depends on it being true that \(p \) (or in the language of existence: depends on the existence of the fact that \(p \)). Like object-dependent abilities generally, factive abilities are common and familiar. Just think of all of the things that you are able know, learn, discover, and remember!

Factive abilities divide modal space. There are the worlds at which the fact obtains, and there are the worlds at which the fact does not obtain. The worlds at which the fact obtains are the worlds that stand out vis-à-vis the prospects of performing the factive action.

Take \(h&l \), for instance. Agents in \(h&l \)-worlds might know that \(h&l \), but agents elsewhere in modal space clearly do not know that \(h&l \)—knowledge is factive. Similarly, agents in \(h&l \)-worlds might have the ability to know that \(h&l \), but agents elsewhere in modal space clearly lack such an ability—only truths are knowable.

Since there are unexercised abilities, the question arises whether an agent might have the unexercised ability to know that \(h&l \). And I think that an agent might. In fact, in the vignette above, I think that \(G \) has the unexercised ability to know that \(h&l \). \(G \) is able to know that \(h&l \), I think, no less so than her fellow classmates. (If \(G \) was unable know that \(h&l \), then \(G \) should not have been enrolled in the physics class to begin with!)

If \(G \) is able to know that \(h&l \), as I claim to be the case, then we have a counterexample to the poss-ability principle. \(G \) does not know that \(h&l \) in worlds in which \(h&l \) is true, for in such worlds her ability is unexercised, nor does she know that \(h&l \) in worlds in which \(h&l \) is false. So while there are worlds in which \(G \) is able to know that \(h&l \), there are no worlds in which \(G \) (exercises her ability) and knows that \(h&l \).

Of course, Simple \(G \) is a strange, somewhat artificial example, and such
examples should not be asked to pull much philosophical weight. Taken by itself, Simple G would be a fairly unconvincing case against the possibility principle. But G-cases are only a part of my argument. The other part is a non-standard proposal about the relationship between abilities and metaphysical possibilities, and the argument gathers force only when the two parts act in tandem. I thus want to switch gears and say a bit about why G-cases arise. To that end, we need to broach the epistemology of ability.

1.2 Why do G-cases arise?

Abilities are not easy to detect. It is, in general, much easier to detect the actions that spring from an agent’s abilities than the agent’s abilities themselves. For that reason, in our epistemology of ability, we use inference to the best explanation, inferring from facts about what agents do to conclusions about what agents are able to do. The best evidence that an agent is able to ϕ is the agent repeatedly attempting to ϕ and repeatedly succeeding—Michael Jordan’s attempts to slam-dunk a basketball are repeatedly successful, so, by inference to the best explanation, Michael Jordan is able to slam-dunk a basketball. The best evidence that an agent is unable to ϕ is the agent repeatedly attempting to ϕ and repeatedly failing—my attempts to slam-dunk a basketball are repeatedly unsuccessful, so, by inference to the best explanation, I am unable to slam-dunk a basketball.6

Keep in mind the order of explanation. It would be wrong to think that the verdicts of our attempts are explanatorily prior to our abilities (as if first someone successfully tries to slam-dunk a basketball and only thereafter and therefore is able to jump so high!). Successful or unsuccessful attempts are not what make agents able or unable. Rather, it is the other way around. Our abilities explain the verdicts of our attempts. Michael Jordan’s attempts to slam-dunk a basketball are successes, and mine are not, because Michael Jordan is able to slam-dunk a basketball, and I am not.

6Terminological note: I use the word ‘attempt’ in a broad sense to mean: circumstance in which the would-be ability might reveal itself in action. Attempts, in my sense, need not be effortful or purposeful. Walking outside might be an attempt, in my sense, to sneeze. Reluctantly attending history class might be an attempt, in my sense, to learn that James Madison was the fourth President of the United States.
But abilities are hard to detect. You cannot just look at someone and thereby ascertain what she is, and is not, able to do. So the epistemology of ability runs in the opposite direction of the metaphysics. The metaphysics follows the order of explanation: we use what the agent is, and is not, able to do to explain the verdicts of the agent’s attempts. The epistemology follows the order of indication: the verdicts of the agent’s attempts indicate what the agent is, and is not, able to do. Successful attempts indicate ability; failed attempts indicate inability.

The method of determining what agents are able to do by looking to the verdicts of their attempts would suffer from a poverty of stimulus if we restricted our attention to present or actual attempts, so we take into consideration non-present and non-actual attempts as well. To keep track of things, we index abilities to times and worlds. (After all, what an agent is able to do changes over time and across possibilities.) The question that we want to answer is whether the agent is presently and actually able to \(\phi \).

Our strategy for answering the question is to look at the agent’s attempts to \(\phi \)—both present and non-present attempts; both actual and non-actual attempts—and extrapolate from the verdicts of the attempts to our conclusion.

Of course, not all of an agent’s attempts are on an evidential par. Some attempts are epistemically relevant, but others are not. To dramatize the point, suppose that in the future I sprout wings. Making the most of my newfound appendages, I repeatedly attempt to fly and repeatedly succeed. Such attempts are, indeed, repeated and successful attempts by me to fly. But everyone recognizes that my future (winged) attempts to fly do not provide good evidence about what I (being unwinged) am presently and actually able to do. My (winged) attempts to fly are not, as I will put it, representative attempts.

What are the representative attempts? Hold fixed the facts that together determine whether \(S \) is presently and actually able to \(\phi \), and consider the attempts by \(S \) to \(\phi \) done at times and worlds at which those facts obtain—those are the representative attempts.\(^7\) The attempts by \(S \) to \(\phi \) that are

\(^7\)Controversies about abilities thus re-emerge as controversies about representative attempts. For example, compatibilists and incompatibilists will disagree about whether
representative of whether S is presently and actually able to ϕ are those attempts done by versions of S that are neither enhanced nor diminished (as compared to the present and actual version of S), in circumstances that are neither more nor less favorable to $S \phi$ing (as compared to the present and actual circumstances).

The epistemology of ability goes via the verdicts of the representative attempts. The verdicts of the unrepresentative attempts carry little or no information; we can ignore them.\(^8\) It is the verdicts of the representative attempts that reveal what an agent is, and is not, able to do. Successful representative attempts indicate ability; failed representative attempts indicate inability.

There is a point to make here about the relationship between abilities and counterfactuals. Counterfactuals, as I see them, are epistemological expeditors: they streamline the epistemology of ability by providing and quick and mostly reliable way of identifying representative attempts.

We want to know whether an agent is presently and actually able to ϕ. So consider the closest possible worlds in which the agent attempts to ϕ. What are the verdicts of the agent’s closest attempts? Are they successes or failures? Counterfactuals draw our attention to the verdicts of the agent’s closest attempts. And there is, indeed, a robust correlation: for the most part, an agent is able to ϕ just if her closest attempts are successes. I believe, however, that this correlation is indirect. Abilities and close successes are correlated not because of some direct link between them but rather because, for the most part, close attempts are also representative attempts. An agent’s closest attempts are typically done by versions of the agent that are neither enhanced nor diminished, in circumstances that are neither more nor less favorable. Thus, close attempts, which are often easier to locate than representative attempts, can serve as useful proxies for representative attempts.

The indirectness of the correlation between abilities and close successes representative attempts by S to ϕ must occur in worlds with the same past and laws as the actual world.

\(^8\) Unrepresentative attempts are not always epistemically irrelevant. If $S \phi$ing in less favorable circumstances, that may be good evidence that S is presently and actually able to ϕ. Thanks to [name removed for blind review] for discussion on this point.
explains why the counterfactual test, although often reliable, occasionally misfires. When the closest attempts are representative attempts, the counterfactual test works fine. But when the closest attempts are unrepresentative, the test makes false predictions. There are two sorts of problems.

Problem #1: The verdicts of the closest attempts might differ from the verdicts of the representative attempts. Consider a finkish agent, e.g., me. I have puny biceps, and I am hopelessly unable to do ten chin-ups. But suppose that I have a fairy angel who hates to see me fail. If I tried to do ten chin-ups, my fairy angel would intervene, temporarily beef up my biceps, and my attempt would therefore be a success. Let us stipulate that the closest worlds in which I attempt to do ten chin-ups are worlds in which my fairy angel intervenes and supplements my strength. Good for me, I suppose, for counterfactually doing so many chin-ups! But my (beefed up) attempts to do ten chin-ups are clearly unrepresentative of what I (being puny) am presently and actually able to do. It may be true that if I tried to do ten chin-ups, I would succeed. It may be true that if I tried to do ten chin-ups, I would magically and temporarily gain the ability to do ten chin-ups. But, despite all of that, I am not presently and actually able to do ten chin-ups. My closest attempts are successes, but my closest attempts are not representative.

There are representative attempts by me to do ten chin-ups, of course; they are attempts done by unenhanced versions of me, i.e., versions of me that have my same puny biceps, and they are, for the most part, failed attempts. As I said, I am not able to do ten chin-ups.

If there are representative attempts, then we can mitigate, and even eliminate, the difference between the verdicts of the closest attempts and the verdicts of the representative attempts by supplementing the antecedent of the counterfactual. We began with the first counterfactual test: if S attempted to ϕ, then S would (or might) succeed. We do better by using the second counterfactual test: if S remained intrinsically very much the same and attempted to ϕ, then S would (or might) succeed. The second counterfactual test is better than the first because, while it is frequently the case that the closest attempts by S to ϕ are representative, it is even more frequently the case that the closest attempts by a not-too-intrinsically-dissimilar version of S are representative. For example, if the closest worlds in which I try to do
ten chin-ups are worlds in which my fairy angel supplements my strength, then the first counterfactual test delivers the wrong results, but the second counterfactual test might still get it right.

The second counterfactual test is still imperfect, however, and for the same basic reason: the closest attempts by a not-too-intrinsically-dissimilar version of the agent are not necessarily representative of what the agent is presently and actually able to do. Imagine that my fairy angel operates not by changing my intrinsic nature but by altering my circumstances. When I try do to ten chin-ups, my fairy angel leaves my puny biceps alone, but produces a propitious gust of wind. My (wind-assisted) attempts are no more representative than are my (beefed up) attempts.

We can continue in this fashion, supplementing the antecedent bit by bit, doing an ever better job of ensuring that the closest, antecedent-satisfying attempts are representative attempts, and thus improving the counterfactual test. For example, we can do better still by using the third counterfactual test: if S remained intrinsically very much the same and the circumstances remained very much the same and S attempted to φ, then S would (or might) succeed. If we are willing to help ourselves to the notion of representativeness, then we can put an end to this Chisholming and cut straight to the chase. Consider the fourth counterfactual test: if S made a representative attempt to φ, then S would (or might) succeed. The fourth counterfactual test ensures that if there are representative attempts, the closest attempts are among them. This is a dramatic improvement; it eliminates any potential difference between the verdicts of the closest attempts and the verdicts of the representative attempts. In my opinion, the fourth counterfactual test is (qua test of ability) as good as a counterfactual test can be.

But even the fourth counterfactual test is imperfect. The problem is not a potential mismatch between the verdicts of the closest attempts and the verdicts of the representative attempts. The problem is that there might not

9Whether it is legitimate to appeal to representativeness depends on our ambitious. If we seek a reductive analysis of ability, then it may be illegitimate, since representativeness should probably itself be understood in terms of ability. I seek a mere a reliable test for abilities, so my appeal to representativeness is not illegitimate.

10The fourth counterfactual test resembles Lehrer’s 1976 semantics for ‘can’.
be any representative attempts at all.

Problem #2: There might not be any representative attempts. There are at least two ways in which it could turn out that there are no representative attempts. First, the agent might be unable to try. Consider a snail. There are no representative attempts by the snail to prove the Riemann Hypothesis. To imagine the snail even attempting to prove the Riemann Hypothesis requires imagining a significantly enhanced version of the snail. The same might go for me in a coma. It might be impossible for someone in a coma to attempt to run. If so, and if I am indeed in a coma, then there will be no representative attempts by me to run.

Second, it might be that all of the agent’s attempts are done in circumstances that are, as compared to the present and actual circumstances, considerably less favorable. This brings me back, finally, to G and her factive abilities.

It may be helpful to start with a temporal analogy. F is considering whether to visit his grandmother. After some deliberation, he decides not to. As of Monday night, let us suppose, F has never attempted to visit his grandmother, and let us suppose, moreover, that F’s grandmother dies on Monday night. If, on Tuesday, F attempts to visit his grandmother, then his attempt will be a failure; his grandmother is not there to be visited. But F’s attempt on Tuesday to visit his grandmother is not representative of whether he was, on Monday, able to visit his grandmother than were the circumstances on Monday.

I think that what goes for F in the temporal case goes equally for G in the modal case. To keep things simple, suppose that G has not, and will not, make an attempt to know that $h\&l$, where an attempt would be something like asking someone or looking it up online.\(^\text{11}\) There are, of course, possible worlds in which G attempts to know that $h\&l$, but all of them are worlds

\(^{11}\)There are G-cases in which G makes one or more representative attempts, e.g., **Mishearing** G: G asks her professor about the laws of nature and initial conditions. Her professor tells her, ‘$h\&l’$, but G mishears and thus comes to form a nearly true but false proposition. G has attempted (in my sense of ‘attempt’; see note 6) to know that $h\&l$, but has suffered a fluky failure.
in which $h \& l$ is false, and worlds in which $h \& l$ is false are considerably less favorable to G knowing that $h \& l$ than are worlds in which $h \& l$ is true. Thus, while modal space contains many attempts by G to know that $h \& l$, and all of them are failures, none of the attempts are representative attempts, and therefore none of the attempts is epistemically helpful. We learn little about whether F was, on Monday, able to visit his grandmother by learning that he fails to visit his grandmother on Tuesday, and we learn little about whether G is presently and actually able to know that $h \& l$ by learning that G fails to come to know that $h \& l$ in worlds in which $h \& l$ is false. In general, failures to perform an object-dependent action in circumstances in which the object is absent tells us little or nothing about whether the agent has the object-dependent ability in circumstances in which the object is present.

There is, I believe, a true principle, in the vicinity of the poss-ability principle, which connects abilities, attempts, and actions. I call it the revealing principle:

$$\text{If } S \text{ is able to } \phi, \text{ and there are enough representative attempts by } S \text{ to } \phi, \text{ then at least one of the representative attempts is a success.}$$

(Q: Why enough representative attempts, rather than any? A: Because there are fluky successes and fluky failures. An agent who is able to ϕ might attempt to ϕ, and fail, not due to inability but simply due to bad luck. Q: How many attempts are enough? A: Enough is a matter both of number and diversity. To ensure that the verdicts are not unduly biased by the circumstances, the attempts must occur in qualitatively diverse circumstances. And to avoid the problem of very bad luck, the attempts must occur in different possible worlds. A single representative attempt can end in fluky failure, so, by a stroke of very bad luck, an agent who is able to ϕ might make any

\footnote{I am actually inclined towards a stronger principle, the \textit{long-run principle}: if there are enough representative attempts by S to ϕ, then S is able to ϕ iff the long-run proportion of S’s representative successes to representative attempts exceeds some minimal threshold. (Different abilities require different thresholds. I am not able to guess the outcome of a coin flip, although I guess right about half of the time; on the other hand, I am able to make a three-point basket, even though I make no more than one in five.) The long-run principle entails the revealing principle.}
number of representative attempts, and all of her attempts might end in fluky failure. But bad luck cannot persist across worlds. If the agent is able to φ, and her representative attempts are scattered across sufficiently many worlds, then it is not possible that all of her representative attempts end in fluky failure.)

I accept the revealing principle. If an agent has an ability, then, given enough representative attempts, the ability will reveal itself in action. But to get from the revealing principle to the poss-ability principle, we need an additional premise. Specifically, we need the premise that, for any S and for any φ, modal space always contains enough representative attempts by S to φ. And it is this premise that I deny. Modal space often contains, but does not always contain, enough representative attempts. The revealing principle thus leaves a blind-spot, and I claim that within this blind-spot lie both cases of ability and inability. Modal space does not contain enough representative attempts by the snail to prove the Riemann Hypothesis, and the snail is unable to prove the Riemann Hypothesis. On the other hand, modal space does not contain enough representative attempts by G to know that h&l, and G is able to know that h&l.\)

\[13\] Given the revealing principle, we have reason to doubt that time-travelers are able to (permanently) kill their younger selves. For though there may be enough representative attempts by the agent to (permanently) kill her younger self, if auto-infanticide is an impossible crime, none of the attempts will be a success.

\[14\] When modal space fails to contain enough representative attempts, we can sometimes circumvent the problem by going vicarious. Take G. The problem is that none of G’s attempts to know that h&l are done in circumstances that are favorable to G knowing that h&l as are the present and actual circumstances. But there is a second best. We can consider one or more agents who are enough like G and who do indeed make attempts in the favorable circumstances, for example G’s classmates. The verdicts of the classmates’ attempts are vicariously representative of whether G is presently and actually able to know that h&l; they represent what would or might have happened if, per impossible, G had attempted to know that h&l in the favorable circumstances that presently and actually obtain (e.g. had G actually attended the physics lecture that her classmates actually attended). The vicarious attempts are successes—upon attending the lecture, G’s classmates come to know that h&l—and this suggests that G, too, is able to know that h&l. Going vicarious does not solve the problem entirely, however, as we will see in section 1.3. Even if we supplement the representative attempts with vicarious attempts, still modal space might fail to contain enough representative attempts.
On this conception of the relationship between abilities and metaphysical possibilities—the epistemological conception—other possible worlds are like additional rooms in a laboratory; their primary purpose is to supply us with additional representative attempts. If we want to figure out whether S is able to ϕ, then we could bring her into the lab, put her in a variety of circumstances, and have her repeatedly attempt to ϕ. Extrapolating from the verdicts of her attempts we could draw an informed conclusion about whether she is, or is not, able to ϕ. Of course, it is not always possible to bring S to the lab for testing, so we face a question: what are we to do when there aren’t enough actual attempts by S to ϕ to serve as the basis for our extrapolation? Answer: use non-actual attempts. The verdicts of S’s non-actual representative attempts give us the same sort of information as do (or would) the verdicts of her actual representative attempts.

The epistemological conception explains both why there are counterexamples to the poss-ability principle and also why the counterexamples are rare, strange, and somewhat artificial. Counterexamples to the poss-ability principle are necessarily unexercised abilities. According to the epistemological conception, there are necessarily unexercised abilities for the same reason that there are actually unexercised abilities. The revealing principle is true, whether we are considering one world or many. If a set of worlds contains enough representative attempts, then at least one of the representative attempts contained therein is a success. There are actually unexercised abilities because, while S may be able to ϕ, the actual world might fail to contain enough representative attempts. There are necessarily unexercised abilities because, while S may be able to ϕ, the whole of modal space might fail to contain enough representative attempts.

Counterexamples to the poss-ability principle are rare, strange, and somewhat artificial because, in order to construct a case in which modal space fails to contain enough representative attempts, we need to exploit some feature of modal space itself. In the vast majority of cases, modal space does indeed contain enough representative attempts—which is why, in the vast of

\[15\]My epistemological conception of the relationship between abilities and metaphysical possibilities is influenced by Kment’s epistemological conception of the relationship between causation and metaphysical possibilities. See Kment 2010 and MSa.
majority of cases, agents’ abilities are possibly exercised.

1.3 Constructing other G-cases

Here are five interesting varieties of G-cases.

Close calls. Despite it being metaphysically impossible for G to φ, G may get arbitrarily close to φing. As G gets closer to φing, the intuition that she is able to φ grows stronger. Here, for example, is a case that exploits the Gettier condition on knowledge:

Gettier G. Curious about the initial conditions and the laws of nature, G decides to ask her mother, who does indeed know that h&l. By a curious twist of fate, however, aliens have randomly chosen one human being to abduct for a single night, and G’s mother is the unlucky Earthling. For the duration of the abduction, G’s mother is replaced by an alien facsimile, who knows neither that h nor that l. G, who justifiedly takes the facsimile to be her mother, asks the facsimile, ‘What are the initial conditions and the laws of nature?’ The facsimile, trying to not blow its cover, takes a wild guess and improbably gets it right, ‘h&l.’ On the basis of the facsimile’s bad testimony, G comes to the true and justified belief that h&l, but G does not know that h&l, as G fails the Gettier condition on knowledge. And because G never receives any further evidence, and never changes the basis of her belief, G never comes to know that h&l.

G does not, and hence necessarily does not, know that h&l, but G seems to be able to know that h&l, nevertheless. It is hard to believe that an agent might have the ability to form the true and justified belief that h&l, yet lack the ability to know that h&l.

Actions that are clearly actions. Perhaps knowing is not an action. There are, however, G-cases that clearly involve actions. Take, for example, the action of teaching, where teaching is understood factively.16

16Thanks to [names removed for blind review] for discussion on this point.
Teacherly G. F and G are both professors at Tech University. Their offices are adjacent. Students often come by to ask about the initial conditions and the laws of nature. Both F and G know that \(h \& l \). Students flip a coin to decide which professor to ask—heads, F; tails, G. Perchance, the coins have always landed heads. Thus, while F has taught many students that \(h \& l \), G has never taught anyone that \(h \& l \).

It seems to me that G, no less so than F, is able to teach students that \(h \& l \); her ability to teach students that \(h \& l \) is part of what makes her such a good professor, after all. But G’s ability to teach students that \(h \& l \) is unexercised, and hence necessarily unexercised.

Other facts. To construct a factive G-case we need a proposition, the truth of which necessitates that G does not perform some particular factive action. I have focused on \(h \& l \), but only for convenience. Other G-cases involve other facts.\(^{17}\) One interesting class of G-cases, for example, involves facts concerning actuality.\(^{18}\) Consider, to take the most extreme example, the proposition *that the actual world is actual*. This is a maximally contingent proposition, a truth that would be false if the world were different in any way at all. I know that the actual world is actual, as do you. But not everyone knows that the actual is actual; many have never even considered the matter. The question arises, then, whether an agent might have the unexercised ability to know that the actual world is actual. And I think so:

Actual G. G is an actual person, a competent college student, who, as a matter of fact, will never come to believe that the actual world is actual.

\(^{17}\)Any proposition that specifies a pocket of determinism, even a pocket contained in an otherwise indeterministic universe, will provide an example. Chalmers 2011 proposes (perhaps unwittingly) an interesting case, which I discuss in section 2.5. A different sort of example can be found in Leibniz. If the actual world is the best of all possible worlds, then an agent who does exercise her ability to know that the world is as could as it could be therefore necessarily does not exercise her ability.

\(^{18}\)Kearns 2011 also discusses facts concerning actuality, arguing that agents might be responsible for impossibilities.
I think that Actual G, like most college students, has the unexercised (and therefore necessarily unexercised) ability to know that the actual world is actual.19

Let me here pause to address incompatibilists, in particular. Incompatibilists should not be persuaded by Simple G, Gettier G, or Teacherly G, as all of these cases rely on the assumption that an agent might be able to do what she is determined not to do. But I think incompatibilists should find other G-cases persuasive, among them Actual G. We can imagine that the actual world is indeterministic, that agents are free from manipulation and coercion, that agents have agent causal powers, et cetera. Actual G does not, and hence necessarily does not, come to know that the actual world is actual, but it would be wrong, I think, to say that G is somehow determined not to come to know.20 It is up to G, I think, in the relevant sense, whether she comes to know that the actual world is actual, even though it is metaphysically necessary that she will not.

Non-factive cases. Whether there are non-factive G-cases depends on what objects there are. All G-cases involve object-dependent abilities, where the existence of the object necessitates that G does not perform the object-dependent action. If objects are sparse and easy to recombine modally, then there might not be any non-factive G-cases. But some philosophers (myself included) believe that objects are plentiful. For instance, consider a large rock in Siberia. Someone inclined by what Karen Bennett calls bazillion thing-ism21 thinks that there is a modally fragile object, which is just like the rock, the same size as the rock, the same color as the rock, co-located with the rock, but different from the rock because it, unlike the rock, has all of its properties essentially. Suppose that nobody ever sees the large rock, and hence that nobody ever sees this modally fragile object. Is this modally fragile object visible? Might an agent have the ability to see it?

19Similar things can be said about other propositions that involve actuality. If I do not know that I was actually born at some specific time, still I might be able to know as much, even though necessarily I do not.

20Being determined not to \(\phi\) requires more than a proposition whose truth necessitates that the agent does not \(\phi\), else unexercised abilities would be impossible!

I think that if this modally fragile object exists, then clearly it is visible object. It is a big as a rock, as brown as a rock, as conspicuous as a rock, and reflects photons just like a rock, indeed, necessarily so! Moreover, agents might have the ability to see it. The fact that this modally fragile object is unseen (and hence necessarily unseen) is not due to a collective lack of ability; it is due, rather, to the fact that modal space affords us so few opportunities to see it.

It is controversial whether these sorts of modally fragile objects exist, and I will not assume that they do. Rather, going forward, I will continue to focus on factive abilities.

Lonely cases. In a Lonely G-case, G is the only being in all of modal space who is rightly positioned to perform a certain factive action:

Lonely G. Suppose that $h \& l$ is true, hence that determinism is true. G, the only intelligent being in the universe, has lived for millions of years, and, in that time, developed all of modern science and mathematics. As it happens, G never comes to believe that $h \& l$, but this is an historical accident. (Perhaps G never considers the question, or perhaps G makes an uncharacteristic blunder in her calculations and thus comes to a false belief.) We can supply G with all the requisite technology (perhaps G need only type the question into her supercomputer) and make G as able-minded as we like.

The following principle is even weaker than the poss-ability principle: if S is able to ϕ, then it is metaphysically possible to ϕ. Lonely G, however, is a counterexample even to this very weak principle. Lonely G is able to do something that not a single being in all of modal space manages to do.

1.4 Summary

Before we reject the poss-ability principle, we need not just a class of alleged counterexamples but also a satisfying explanation for why the poss-ability principle has held such appeal. I claim that by coupling G-cases with the revealing principle, we have what we need. The poss-ability principle has seemed true because counterexamples are rare. Agent’s abilities are almost
always possibly exercised. Counterexamples appear only when we turn our
attention to the cases for which modal space fails to contain enough represen-
tative attempts, i.e., G-cases.

2 Consequences of rejecting the poss-ability principle

The revealing principle is only slightly weaker than the poss-ability prin-
ciple. Nevertheless, the consequences of rejecting the poss-ability principle and
retreating to the revealing principle are interesting and far-reaching.

2.1 Abilities

The first consequence belongs to metaphysics. An analysis of ability is a
specification of what it is for an agent to have an ability. The leading analyses
of ability take ability to be analyzed in terms of metaphysical possibility; they
are, in that sense, modal analyses. If we reject the poss-ability principle, then
modal analyses of ability fail.

There are two main sorts of modal analyses of ability: counterfactual
analyses and restricted possibility analyses. Let me start with counterfactual
analyses. According to a counterfactual analysis: S is able to ϕ iff S would
(or might) ϕ if S ψed. The most famous counterfactual analysis is the so-
called ‘conditional analysis’, due to G. E. Moore (1912), according to which:
S is able to ϕ iff S would ϕ if S tried to ϕ. On the standard Stalnaker-Lewis
semantics for counterfactuals, ‘S would ϕ if S tried to ϕ’ is true iff some
or all of the closest worlds in which S tries to ϕ are worlds in which S ϕs.
Similarly, ‘S would (or might) ϕ if S ψed’ is true iff some or all of the closest
worlds in which S ψs are worlds in which S ϕs.

G-cases make trouble for counterfactual analyses in the obvious way. In
a G-case, G is able to ϕ, even though there is no possible world in which G
ϕs. In a Lonely G-case, G is able to ϕ, even though there is no possible world
in which anyone ϕs. G-cases thus suggest that there is no counterfactual of
the form ‘S would (or might) ϕ if S ψed’ that is a necessary condition on
S being able to ϕ. An agent might have an ability, even though there is no
circumstance in which she would (or might) exercise the ability.
G-cases also make trouble for restricted possibility analyses. There is a sense of ‘can’—often called the ‘can’ of ability—for which the following biconditional is uncontroversially true: S is able to φ iff S can (in the special sense) φ. The ‘can’ of ability denotes a particular grade of possibility, which I shall here label \textit{agentive possibility}. We thus have three equivalent ways of speaking: S is able to φ iff S can (in the special sense) φ iff it is agentively possible for S to φ.

According to the restricted possibility analysis, agentive possibility is a restricted grade of metaphysical possibility, where X-possibility is a restricted grade of Y-possibility iff to be X-possible is to be Y-compossible with a certain set of facts. The paradigm is nomic possibility, which is a restricted grade of metaphysical possibility: to be nomically possible is to be metaphysically compossible with the nomic facts. If agentive possibility is likewise a restricted grade of metaphysical possibility, then there is some (perhaps time-, individual-, and context-relative) set of facts—we may call them the \textit{agentive facts}—such that to be agentively possible is to be metaphysically compossible with the agentive facts. For S is able to φ, according to the restricted possibility analysis, is for it to be metaphysically compossible with the agentive facts that \(S \phi \).

If any conception of ability deserves to be called the prevailing view, it is the restricted possibility analysis.22 But if the poss-ability principle is false, then so too is the restricted possibility analysis. After all, no matter what the agentive facts are, it is not metaphysically compossible with \textit{them} that G knows that h&l!23

22See e.g. Lewis 1976 and van Inwagen 1983. Mele 2003 says, ‘Philosophers happy to talk in terms of possible worlds will say that an agent at a world W is [able] to A at t if and only if she (or a counterpart) A-s at t in some relevant possible worlds. . . . One way to see the disagreement about incompatibilists and compatibilists about determinism and being able to do otherwise is as a disagreement about what worlds are relevant. According to incompatibilists, all and only worlds with the same past and natural laws as W are relevant; they hold the past and the laws fixed. Compatibilists disagree’ (p. 451). Vetter 2014 treats the restricted possibility of analysis as given, and ‘propose[s] that we extend the restricted possibility of abilities to dispositions’ (p. 133).

23Objection: Even if existing modal analyses of abilities entail the poss-ability principle should thus be rejected, couldn’t we formulate a new modal analysis that did not entail the poss-ability principle? Reply: Yes. One option is a counterpart-counterpart theory,
2.2 The ability to do otherwise

The second consequence also belongs to metaphysics. One of the most important arguments for incompatibilism is the Consequence Argument. If the poss-ability principle is false, the Consequence Argument is unsound.

The Consequence Argument, as it is standardly presented, involves a sentential operator, ‘N’, and two rules of inference that govern its application, Rule (α) and Rule (β). According to Rule (α): □p ⊢ Np. (In English: if it is metaphysically necessary that p, then nobody is able to render it false that p.) According to Rule (β): Np, N(p → q) ⊢ Nq. (In English: if nobody is able to render it false p, and nobody is able to render it false that p materially implies that q, then nobody is able to render it false that q.) Whereas Rule (β) is famously controversial, many regard Rule (α) as a virtual truism. Kadri Vihvelin (2011, section 5) says, ‘Rule Alpha is uncontroversial’. Alicia Finch and Ted A. Warfield (1998, p. 517) say, ‘Rule Alpha is surely unobjectionable’. Peter van Inwagen, himself, says,

I do not see how anyone could reject Rule (α). If (α) is invalid, then it could be true that someone has a choice about what is necessarily true. Hardly anyone besides Descartes has been willing to concede such a capacity to God. No one, so far as I know, has ever suggested that human beings could have a choice about what is necessarily true. (1983, p. 96)

24 See e.g. Ginet 1966 and van Inwagen 1983.
25 Here and throughout, ‘→’ and ‘↔’ are the material conditional and biconditional, respectively.
I, however, do reject Rule (α). I also reject van Inwagen’s intimation that it would take a creature of godly powers to invalidate Rule (α). I think that Rule (α) is invalid, even when restricted to human beings. G-cases are counterexamples. It is necessarily false that G knows that h&l, but G is able to know that h&l. Hence, for any interpretation of ‘N’ on which N(S does not φ) implies that S is unable to φ, Np does not follow from □p. Moreover, if N(p → q) follows from □q, as presumably it does, then G-cases are also counterexamples to Rule (β).26

The failure of the poss-ability principle implies, then, that the Consequence Argument, at least as it is presently formulated, is unsound.27 As threatening as this sounds, I suggest that incompatibilists see it less as a threat than as a challenge. In my view, everyone should reject the poss-ability principle, compatibilists and incompatibilists alike. And I suspect that the Consequence Argument can be formulated in a way that does not rely on the poss-ability principle. But the failure of the poss-ability principle does present a challenge; it forces incompatibilists to say more about how, exactly, determinism poses a threat to freedom. (I will here understand freedom as the ability to do otherwise).

According to a long and storied tradition, the threat of determinism is none other than the threat of necessity. On this way of seeing things, freedom requires that it be contingent that we act as we do;28 determinism implies that it is necessary that we act as we do; and the fundamental question in the compatibility debate is whether the contingency required by freedom is compatible with the necessity implied by determinism. The Consequence Argument can be formulated in a way that does not rely on the poss-ability principle. In particular, the Consequence Argument can be formulated as follows: if N(p → q) follows from □q, as presumably it does, then G-cases are also counterexamples to Rule (β).
Argument is an attempt to lay bare the incompatibilists’ view that the necessity implied by determinism excludes the contingency required by freedom. According to the Consequence Argument: (1) if determinism is true, then, holding fixed the past and the laws, it is metaphysically impossible for agents to act otherwise; (2) nobody has any choice about the past and the laws, so the facts about the past and the laws should be included among the agentive facts; and (3) the contingency that freedom requires is metaphysical contingency holding fixed the agentive facts. From (1), (2), and (3), incompatibilism follows.

There is, of course, a great deal of controversy about (2). But what the failure of the poss-ability principle shows us is that, even putting such controversies aside, (3) is false. The Consequence Argument, at least as it is presently formulated, relies on a mistaken conception of the contingency that freedom requires. The contingency that freedom requires is not metaphysical contingency, hence it is not metaphysical contingency holding fixed some set of facts. Thus the challenge for incompatibilists: why, exactly, does determinism pose a threat to freedom? The threat of determinism cannot simply be the threat of metaphysical necessity (holding fixed some facts), for S might be able to ϕ, even though it is metaphysically necessary that S does not ϕ.

For compatibilists, the failure of the poss-ability principle is interesting because it brings into focus the question of whether metaphysical contingency matters at all. Does the freedom enjoyed by agents in deterministic universes crucially depend on the past or the laws being metaphysically contingent? Many compatibilists have thought that agents in deterministic universes act freely only if (and only because) the past or the laws are metaphysically con-

\footnote{29}{See e.g. Holliday 2012, Huemer 2000, and Lewis 1981.}

\footnote{30}{This question, I think, can be answered, though I suspect that different incompatibilists will answer it differently. A fan of agent causation (see e.g. O’Connor 2000), for example, might think that the ability to do otherwise is the ability to agent-cause yourself to do otherwise, and that the causal necessity associated with determinism excludes the possibility of agent-causation. So, while the ability to ϕ might be compatible with it being metaphysically impossible to ϕ, the ability to ϕ is not compatible with being determined not to ϕ.}
tingent. But if we reject the poss-ability principle, then there is room for the opposing view, that agents might act freely, even in the absence of metaphysical contingency— which, insofar as I am inclined toward compatibilism, is the sort of view that I would want to defend. Such a view might be labeled an ‘actual sequence’ conception of the ability to do otherwise. It says that determinism might be true, the past and the laws might be metaphysically necessary, and still agents might act freely, i.e., be able to do otherwise.

2.3 ‘Can’

The third consequence belongs to semantics. In semantics, the ‘can’ of ability is standardly treated as a possibility modal. Oversimplifying, if the ‘can’ of ability is a possibility modal, then there is a space of worlds, and a way of selecting a subset thereof, such that $[\text{can } \phi]$ is true iff there is at least one world among the selected subset at which $[\phi]$ is true. If the poss-ability principle is false, then one of two consequences follows. Either we must abandon the project of treating the ‘can’ of ability as a possibility modal, or the space of worlds that we use for semantics must include worlds that are not metaphysically possible.

2.4 ‘Ought’ and moral responsibility

The fourth consequence belongs to meta-ethics. There are several alleged connections between moral notions and metaphysical modality. I believe,

\[\text{See e.g. Lewis 1981, Fischer 2006a, and Vihvelin 2013.}\]

\[\text{Wolf 1990 seems to have this sort of ‘actual sequence’ view of the ability to do otherwise. For a defense of an ‘actual sequence’ conception of moral responsibility, see e.g. Fischer 2006b.}\]

\[\text{See e.g. Krazter 1977 and 1981.}\]

\[\text{See e.g. Vetter’s 2013 semantics for ‘can’, which does not invoke possible worlds.}\]

\[\text{Note that the usual problems associated with moving from a possible worlds semantics to a possible-and-impossible worlds semantics (see e.g. Berto 2013 and Stalnaker 1996) are exacerbated in the present context because we are interested in factive abilities. If it is both truth and false at } w, \text{ the impossible world at which } G \text{ knows that } h&l, \text{ that } G \text{ believes that } h&l, \text{ for example, then it would seem to follow that } G \text{ is able to know a proposition that she does not believe, since there is a relevant (albeit impossible) world in which she does. But } G \text{ is not able to know propositions that she does not believe.}\]
however, that these connections are indirect; they are mediated by a direct connection between moral notions and ability. And since the poss-ability principle is false, these alleged connections admit of counterexamples.

Consider the following G-case, in which G’s failure to ϕ is willful, deliberate, and morally weighty:

Willful G. Suppose that $h&l$ is true, and hence that determinism is true. G receives a one-question true-or-false quiz. The question: ‘True or false: $h&l$?’ As it happens, G’s father is up for the PTA Father of the Year Award, which he both yearns for and deserves to win. G knows that her father will lose the award if she fails the quiz. Out of nothing but willful and bitter teenage rebellion, G intentionally fails the true-or-false quiz. G, who knows full well that $h&l$, incorrectly answers that $h&l$-is-false.

Correctly answering that $h&l$-is-true is a factive action; it is an action that most of G’s classmates perform, an action that, in my view, G is able to perform, yet an action that it is metaphysically impossible for G to perform. Here, where ability and metaphysical possibility part ways, moral notions seem to me to travel together with ability.

I claim that G ought (in the moral sense) to correctly answer that $h&l$-is-true, and therefore that G does as she ought not to do. There may be a true version of ‘ought’ implies ‘can’. If so, it is the principle that ‘ought’ implies ‘it is agentively possible that’: ought implies _ability_. The principle that ‘ought’ implies ‘it is metaphysically possible that’ is false; _Willful G is a counterexample. It is metaphysically impossible for G to correctly answer_

Objection: It is not true that G ought to correctly answer that $h&l$-is-true. What is true is that G ought not to have the bitter thoughts and desires that lead her to incorrectly answer that $h&l$-is-false, but it is metaphysically possible for G to lack those bitter thoughts and desires. **Reply:** Yes, G ought not to have those bitter thoughts and desires, but, in addition, G ought not to do as she does. Consider a psychological duplicate of G, G^*, who similarly knows that $h&l$, who similarly knows about her father’s desire for the PTA Father of the Year Award, who has the same bitter thoughts and desires as does G, but who, for whatever reason, correctly answers that $h&l$-is-true, perhaps unintentionally. It stands to reason that G has done more wrong than G^* has. G has more to regret, more to atone for, than does G^*. Thanks to [names removed for blind review] for discussion on this point.
that \(h \& l \)-is-true, but \(G \) ought (in the moral sense) to correctly answer that \(h \& l \)-is-true.

Similarly, I claim that \(G \) is morally responsible and blameworthy for failing to correctly answer that \(h \& l \)-is-true (or equivalently: \(G \) is morally responsible and blameworthy for incorrectly answering that \(h \& l \)-is-false). Typically, if an agent ought to \(\phi \), but cannot, the agent is thereby excused for failing to \(\phi \). But the fact that it is metaphysically impossible for \(G \) to correctly answer that \(h \& l \)-is-true does not seem to excuse \(G \) for failing to do so. There might be a true version of the principle of possible action. If so, it is the principle of agentively possible action: an agent is morally responsible for failing to \(\phi \) only if it is agentively possible that the agent \(\phi \). The principle of metaphysically possible action is false; Willful \(G \) is a counterexample. It is metaphysically impossible for \(G \) to correctly answer that \(h \& l \)-is-true, but \(G \) is morally responsible and blameworthy for failing to correctly answer that \(h \& l \)-is-true.

2.5 The blankables and, in particular, knowability

The fifth and final consequence belongs to philosophical logic. The blankables are a subclass of words in English that end ‘-able’ or ‘-ible’; they include the words ‘visible’, ‘perceptible’, ‘discoverable’, ‘thinkable’, ‘provable’, ‘fallible’, and ‘conquerable’. The blankables are to be analyzed in terms of ability. A visible object is an object that can, in the ability sense, be seen. A knowable object is an object that can, in the ability sense, be known.

37 The principle of possible action was introduced by van Inwagen 1978.
38 Whether there are obligations that are impossible to satisfy bears on a number of questions in deontic logic. For example, some have attempted to understand obligation as a restricted grade of metaphysical necessity. Where \(d \) is the claim that all obligations are met, obligation is then understood as compossibility with \(d \). It is unclear whether this ‘reduction of deontic logic to alethic modal logic,’ as Anderson 1958 calls it, can succeed, however, if there are impossible obligations. For more on the Andersonian-Kangerian reduction, see e.g. Kanger 1957, Lokhorst 2006, and Mares 1992.
39 There is another class of words that end ‘-able’ or ‘-ible’, which include the words, ‘admirable’, ‘desirable’, ‘valuable’, and ‘enviable’. These words, at least on their most natural readings, are of a kind with ‘trustworthy’ and ‘newsworthy’; they are to be analyzed, not in terms of ability, but in terms of fittingness or worthiness. To be admirable, for instance, is to be a fitting object of admiration.
Like ability, the blankables are often analyzed in terms of metaphysical possibility. The claim that \(x\) is visible is regimented: ‘\(\Diamond Sx\)’, i.e., as the claim that it is possible that \(x\) be seen. The claim that \(p\) is knowable is regimented: ‘\(\Diamond Kp\)’, i.e., as the claim that it is possible that \(p\) be known.

If the poss-ability principle was true, then the modal regimentation of the blankables might be legitimate. But the poss-ability principle is false, and the modal regimentation of the blankables is not just illegitimate but also a source of philosophical confusion.

Start with *exercisability*. Some have objected to my negative thesis—viz., that \(G\)-cases are counterexamples to the poss-ability principle—on the grounds that abilities must be exercisable. But this objection misses its mark. I fully agree that abilities must be exercisable. The crucial question is whether we should understand exercisability in terms of ability or in terms of metaphysical possibility. I say that something might be exercisable, even though it is necessarily unexercised. \(G\)’s ability to know that \(h\) is a good example.

In general, the distinction between being necessarily unblanked and being unblankable strikes me as neglected but important. I suspect that some perceptible things are necessarily unperceived (I gave a possible example in section 1.3); I suspect that some tangible things are necessary untouched; and I suspect that some knowable things are necessarily unknown. In the remainder of the paper, I want to focus on knowability. The fact that something can be knowable yet necessarily unknown can help to shed light, I think, on two paradoxes of knowability.

Fitch’s paradox of knowability. Anti-realissts, of a Dummettian bent, hold that there is a knowability constraint on truth: all truths are knowable.\(^{40}\) There is a famous argument against the knowability constraint, first published by Frederic Fitch (1963). The argument begins by regimenting knowability as ‘\(\Diamond K\)’, and proceeds as follows:

\[
\begin{align*}
(1) \ p & \rightarrow \Diamond Kp. & \text{premise, the knowability constraint} \\
(2) \ q & \land \neg Kq & \text{premise, some truth is unknown}
\end{align*}
\]

\(^{40}\)Dummett wavers on what, exactly, this knowability constraint is supposed to come to; see e.g. Dummett 2001 and 2009. For a good recent discussion, see Hand 2014.
(3) \((q \land \neg Kq) \rightarrow \Diamond K(q \land \neg Kq)\) from (2), by the knowability constraint

(4) \(\Diamond K(q \land \neg Kq)\) from (2) and (3), by sentential logic

(5) \(\Diamond (Kq \land K\neg Kq)\) from (4), by \(\Box (K(p \land q) \rightarrow (Kp \land Kq))\)

(6) \(\Diamond (Kq \land \neg Kq)\) from (5), by factivity of knowledge

But (6) is false; contradictions are not possibly true. Yet the other premises are true, and the inferences are valid, so the knowability constraint stands refuted—or so says Fitch’s argument.

I think that we can expose a flaw. We should respond to Fitch in the form of a dilemma. If ‘\(\Diamond Kp\)’ means that it is possible that \(p\) be known, then the argument may be sound, and its conclusion may be true, but the argument says nothing about the knowability constraint. The argument is then a refutation of the ‘possibly known’ constraint on truth: all truths are possibly known. One could propose a ‘possibly known’ constraint on truth, I suppose, but that was not the anti-realists’ proposal. The anti-realists proposed a knowability constraint on truth, and the knowability constraint does not imply the ‘possible known’ constraint. A proposition might be knowable yet necessarily unknown. I am suggesting that \(K(q \land \neg Kq)\) may be one such example.\(^{41}\)

On the other horn of the dilemma, if ‘\(\Diamond Kp\)’ is stipulated to mean that \(p\) is knowable, then the move from (4) to (5) is invalid. The fact that a conjunction is knowable does not imply that there is a possibility in which each of the conjuncts is known.

I do not, myself, accept the knowability constraint on truth, but my advice to those who do is get clearer about the relationship (and distinction) between being knowable and being possible known. Fitch’s argument does obviously give us reason to abandon the knowability constraint on truth.

Let me briefly switch from offense to defense. Some who have seen or heard this paper have thought that the argument that I run from the failure of the poss-ability principle to the potential knowability of Fitch propositions

\(^{41}\)Fara 2010 also suggests that \(K(q \land \neg Kq)\) might be knowable but necessarily unknown. Fara does not, however, discuss G-cases, the epistemological conception, or the bearing of the failure of the poss-ability principle on the compatibility debate or meta-ethics.
should be run *modus tollens* against me. They treat the unknowability of Fitch propositions (i.e. propositions of the form \((p \land \neg Kp)\)) as a fixed point, and believe that any theory that implies the knowability of Fitch propositions thus stands refuted. Does rejecting the poss-ability principle necessarily entail that Fitch propositions are knowable?

One argument suggests that it does. Suppose that \(G\) is able to know that \(h\&l\). The truth of \(h\&l\) necessitates that \(G\) does not come to believe that \(h\&l\), so \(G\) (or, \(G+\), a suitably enhanced version of \(G\)) ought to be able to know that \(\Box(h\&l \to \neg K(h\&l))\). By a plausible principle of closure, then, \(G\) (or \(G+\)) ought to be able to know that \((h\&l \land \neg K(h\&l))\), but this is a Fitch proposition. Hence the allegedly threatening conclusion: \(G\)-cases are counterexamples to the poss-ability only if Fitch propositions are knowable.

I respond to this objection by taking issue with it at three points. First, the argument that Fitch propositions are always unknowable remains to be seen. The standard argument relies on the poss-ability principle, but I reject the poss-ability principle. At least in the present context, another argument is needed. Second, necessitation is not always epistemically transparent. Although \(\neg K(h\&l)\) may be necessitated by \(h\&l\), it need not be scrutable on the basis of \(h\&l\), so there is no reason to think that \(G\) (or \(G+\)) ought to be able to know that \(\Box(h\&l \to \neg K(h\&l))\). Thus, even if the threatening argument is sound—which I doubt very much—still there would be some \(G\)-cases that did not lead to the knowability of Fitch propositions, so the main claims of the paper would stand. But third, and most importantly, if we start from the premise that Fitch propositions are always unknowable, then we can show that a number of plausible-sounding closure principles fail. Knowability is not closed under conjunction introduction, nor it is closed under known implication.\(^{42}\)

\(^{42}\)Here is a counterexample to the closure of knowability under conjunction introduction. (Keep in mind that only truths are knowable.) Let \(p\) be some mathematical truth. With an hour of effort, \(S\) could prove that \(p\). I take that if someone is able to prove that \(p\), then she is able to know that \(p\). So \(S\) is able to know that \(p\). \(S\) is the best mathematician in the world, and knows as much. \(S\) knows that nobody besides herself knows that \(p\), for nobody else has the requisite mathematical prowess. Moreover, \(S\) knows that she herself will not come to know that \(p\), for she will be too lazy to put in the hour of effort it would take to determine for herself whether \(p\) is true or false. So \(S\) knows that nobody knows
completely uncontroversial, if Fitch propositions are always unknowable, then
I am inclined to think that knowability also fails to be closed under known
necessary implication.\footnote{I am tempted by a hypothesis suggested to me by [name removed for blind review],
that the only non-trivial operations under which knowability is closed are single-premise
operations. Consider a logically valid deduction from some premises, \(p_1, p_2, \ldots, p_n\) to
\(q\). If each premise, \(p_i\), can be known without \(q\) being known, then, since knowability is
not closed under conjunction introduction, we can construct a model in which each of
the premises is knowable but the conclusion is not, since there is no accessible world in
which the premises are known together. This give us model-theoretic reason to think that
knowability should fail to be closed even known necessary implication.}
I am thus unconvinced by this Fitch-y objection.

Perhaps \(G\) is able to know a Fitch proposition; and if not, if Fitch propositions
are always unknowable, for instance, then \(G\) might still be able to know
both that \(h\&l\) and that \(\Box((h\&l) \rightarrow \neg K(h\&l))\). \(G\)-cases thus would still be
counterexamples to the poss-ability principle.\footnote{Thanks to [names removed for blind review] for discussions of knowability and closure.}

Chalmers’s paradox of knowability. A second paradox of knowability has
recently been put forward by David Chalmers:

It is widely believed that for all \(p\), or at least all entertainable \(p\), it
is knowable a priori that \((p \iff \text{actually } p)\). It is even more widely
believed that for all such \(p\), it is knowable that \((p \iff \text{actually } p)\).
There is a simple argument against these claims from four
antecedently plausible assumptions. . . . [Let] ‘\(A\)’, ‘\(E\)’, ‘\(K\)’, ‘\(\Box\)

\[\neg Kp\]. Knowledge implies knowability, so \(S\) is able to know that \(\neg Kp\). If Fitch
propositions are always unknowable, then \(S\) is not able to know that \((p \land \neg Kp)\), however,
so knowability is not closed under conjunction introduction.

A similar argument shows that knowability is not closed under known implication. Imagine
that a list of a thousand mathematical statements appears and that it is known that
exactly one of the statements is true. Again, for each statement on the list, \(n\), \(S\) knows
that \(\neg Kn\)—as \(S\) knows, others lack the ability to prove that \(n\), and while \(S\) herself has
the ability to prove that \(n\), \(S\) will not prove that \(n\), for she’s too lazy to try. Performing a
simple deduction, \(S\) comes to know, for each statement, \(n\), that \((n \rightarrow (n \land \neg K\neg K))\). Suppose that \(m\) is the true statement among the thousand. . . \(S\) is able to know that \(m\), and
\(S\) in fact knows that \((m \rightarrow (m \land \neg Km))\). If Fitch propositions are always unknowable,
however, then \(S\) is not able to know that \((m \land \neg Km)\), so knowability is not closed under
known implication.

\(\Box((h\&l) \rightarrow \neg K(h\&l))\)
'Necessarily' and 'Possibly', while ‘→’ and ‘↔’ are the material conditional and biconditional. In addition, q is any (entertainable and expressible) proposition that no-one actually entertains, while r is ¬Eq, the proposition that no-one entertains q.

\[(1) \quad Ar\]
\[(2) \quad Ar \rightarrow \Box Ar\]
\[(3) \quad \Box(K(r \leftrightarrow Ar) \rightarrow (r \leftrightarrow Ar))\]
\[(4) \quad \Box(r \rightarrow \neg K(r \leftrightarrow Ar))\]
\[
\therefore
\[(5) \quad \neg \Diamond K(r \leftrightarrow Ar)\]

The conclusion follows from the premises by classical logic and weak modal logic K. From (3) and (4), one can derive
\[\Box((r \leftrightarrow Ar) \rightarrow (r \leftrightarrow Ar) \land \neg r)\]. From (1) and (2), one can derive
\[\Box(K(r \leftrightarrow Ar) \rightarrow Ar)\]. From these two claims, one can derive
\[\Box(K(r \leftrightarrow Ar) \rightarrow (r \leftrightarrow \neg r))\], from which the conclusion follows.

The intuitive argument goes like this. Every world is either an r-world or a ¬r-world. There is no r-world in which someone knows that (r ↔ Ar), because there is no r-world in which someone entertains that (r ↔ Ar). One must entertain that (r ↔ Ar) in order to know that (r ↔ Ar), and one must entertain that q in order to entertain that (r ↔ Ar), but the r-worlds are precisely the worlds in which no one entertains that q. At the same time, there is no ¬r-world in which someone knows that (r ↔ Ar), as (r ↔ Ar) is false at ¬r-worlds.

I think, however, that we should resist Chalmers’s argument. As before, we should respond in the form of a dilemma. If ‘◊’ and ‘□’ denote metaphysical possibility and necessity, then the argument might be valid, and its conclusion might be true, but the paradox is falsely advertised. Its conclusion, then, is that it is metaphysically impossible for someone to know that (r ↔ Ar). I accept this conclusion. But the fact that (r ↔ Ar) is necessarily unknown does not imply that (r ↔ Ar) is unknowable. There are knowable truths that are necessarily unknown. I gave one example in Lonely G. I think that (r ↔ Ar) is another example.
Chalmers’s argument has the paradoxical conclusion that it advertises only if ‘◊’ and ‘□’ denote agentive possibility and necessity. But if ‘◊’ and ‘□’ denote agentive possibility and necessity, then premise (2) is false. Although Ar might imply that it is metaphysically necessary that Ar, it does not imply that it is agentively necessary that Ar. (Put another way, the fact that no one actually entertains that q does not imply that no one is able to actually entertain that q.) We are supposed to accept (2) as a consequence of a more general principle: namely, (∀p)(Ap → □Ap). But if ‘□’ denotes agentive necessity, then (∀p)(Ap → □Ap) is the principle of actualized fatalism; it says that agents are able to actually do only what they actually do. And just as the principle of fatalism (i.e. (∀p)(p → □p)) stands refuted by unexercised abilities, so the principle of actualized fatalism stands refuted by unexercised actualized abilities. If I reach a fork in the road, then I am able to actually go left and actually go right, even though I actually go only one way or the other. In the same sort of way, the fact that I do not actually entertain that q does not imply that I am not able to actually entertain the q; my ability might be unexercised (and hence necessarily unexercised).

We should, in the end, then, reject Chalmers’s argument. Those who believe that, for all entertainable p, it is knowable that (p iff actually p) may continue doing so. But Chalmers’s argument is still very interesting, I

45 Chalmers 2011 (pp. 417–8) considers an objection along these lines: ‘One... strategy appeals to agentive possibility... holding that a proposition is knowable when it is agentively possible for someone to know it, while denying that agentive possibility entails metaphysical possibility. This position faces an obvious challenge, however, in that the original argument might be reformulated in terms of agentive possibility, and the case for the four key premises remains strong when read this way.’ I respond, as I do in the text, that the case for (2) is not strong when read in terms of agentive possibility.

In personal communication Chalmers has asked me whether we could introduce an actuality-like operator, A, which, still reading ‘□’ as agentive necessity, makes premise (2) true. My answer is that perhaps we could, and that it would be interesting if we could, but that this won’t save the paradox. The widespread belief that all entertainable truths of the form (p iff actually p) are knowable concerns the familiar notion of actuality, and the familiar notion of actuality does not imply agentive necessity. There may be an actuality-like operator, A, that stands to agentive necessity as the familiar notion of actuality stands to metaphysical necessity, and there may be entertainable but unknowable truths of the form (p iff Ap). But we should be honest: strictly speaking, nobody has ever thought otherwise!
think, for Chalmers has drawn attention to a particularly interesting factive ability—viz., the ability to know that \((r \leftrightarrow Ar) \)—and proved that this ability is necessarily unexercised. Although necessarily unexercised, I claim that this ability is nevertheless widely possessed. Just about anyone who is able to entertain that \((r \leftrightarrow Ar)\) is able to know that \((r \leftrightarrow Ar)\), I think. In particular, you and I are able to know that \((r \leftrightarrow Ar)\). And I find this very interesting. For the fact that you and I are able to know that \((r \leftrightarrow Ar)\) implies that, like Lonely G, you and I are able to do something that not a single being in all of modal space manages to do. You and I and others like us are quite literally, I think, able to do the impossible.46

References

46[Acknowledgements removed for blind review.]

[34] —— MSb: ‘Freedom, Luck, and the Principle of Sufficient Reason’.

